Observability using Grafana - lessons learned
Introduction At GetInData, we understand the value of full observability across our application stacks. In this article we will share with you our…
Read moreStaying ahead in the ever-evolving world of data and analytics means accessing the right insights and tools. On our platform, we’re committed to providing top-tier tutorials, expert opinions, and trend analyses to keep you informed and ahead of the curve.
In this post, we spotlight five standout blogs from 2024 that are making waves in the data and analytics community. Whether you’re a data engineer, scientist, or enthusiast, these articles will help you tackle challenges, improve workflows, and unlock opportunities in your field.
This blog explores data modeling in Looker, comparing Persistent Derived Tables (PDTs) and dbt for structuring data to drive insights and support decision-making. PDTs leverage Looker’s SQL-based LookML for in-platform data transformation, enabling seamless integration with the Looker environment but limiting reusability outside it. Alternatively, dbt allows for external SQL transformations, offering enhanced documentation, robust testing capabilities, and code reusability across multiple tools, making it a versatile choice for broader data workflows. The blog showcases a use case for modeling organizational revenue data, demonstrating the strengths and trade-offs of both approaches. While dbt excels in validation, documentation, and cross-platform compatibility, PDTs offer streamlined Looker integration, making a choice depending on specific organizational needs and data infrastructure.
This blog explores best practices for enhancing the performance and reliability of Flink SQL by optimizing joins, state management, and checkpointing. It highlights how efficient checkpointing mechanisms, such as unaligned checkpointsand incremental state snapshots, can significantly improve job stability while reducing latency. Strategies like using lookup join temporal joins, and limiting state size through bright query designs minimize computational overhead and state explosion. The blog also provides insights into replacing state-heavy operators with stateless alternatives to boost job scalability and performance. By adopting these techniques, users can optimize resource usage, reduce checkpoint failures, and achieve stable and efficient data processing pipelines with Apache Flink SQL.
This blog delves into the challenges of managing race conditions and changelogs in Apache Flink SQL, a powerful framework for real-time stream processing. Race conditions occur when events are processed asynchronously, leading to issues like data corruption, which Flink addresses with FIFO buffers and changelog concepts (+I, -U, +U, -D). While tools like the Sink Upsert Materializer help mitigate event order discrepancies, they come with performance trade-offs and limitations in specific scenarios like temporal and lookup joins. Best practices include using rank versioning (TOP-N function) to ensure data integrity and avoiding non-deterministic columns or metadata columns in CDC workflows. With careful implementation of Flink’s features and configurations, race conditions can be managed effectively for consistent and reliable data processing.
The Big Data Technology Warsaw Summit 2024 celebrated its 10th edition, highlighting cutting-edge trends such as data lakehouses, AI, and generative AI while reflecting on the evolution of technologies like Spark, Flink, and Iceberg. Agile Lab, HelloFresh, Ververica, Spotify, and Dropbox presented innovations in data architecture, real-time analytics, and sustainability efforts. Agile Lab explored the migration from Lambda to Kappa Architecture with Iceberg, while HelloFresh demonstrated how automatable data contracts enhance trust and data quality at scale. Ververica’s real-time clickstream analytics and Spotify’s carbon-reduction initiatives highlighted the practical applications of big data in business and environmental impact. Dropbox presented its shift to a Data Mesh architecture, emphasizing efficient governance, scalability, and cultural shifts in managing data as a strategic asset.
Snowflake has embraced the data lakehouse architecture, combining the strengths of data warehouses and lakes to address challenges like governance, flexibility, and cost. This blog introduces Apache Iceberg, an open table format that ensures schema evolution, transactional consistency, and interoperability with multiple data engines. Snowflake’s support for Iceberg tables allows organizations to store data externally in open formats while leveraging Snowflake’s governance, security, and performance benefits. Key use cases include:
The article also previews a blueprint architecture for building cost-efficient and flexible Snowflake-based data lakehouses.
Our blog is your go-to resource for expert analysis, actionable insights, and industry updates in data and analytics. Bookmark our site and subscribe to our newsletter to ensure you never miss out on the knowledge you need to succeed in 2024 and beyond.
Start exploring these articles and let our expertise power your data journey!
Introduction At GetInData, we understand the value of full observability across our application stacks. In this article we will share with you our…
Read moreAbout In this White Paper we described use-cases in the aviation industry which are the most prominent examples of Big Data related implementations…
Read moreIntro Machine Learning is now used by thousands of businesses. Its ubiquity has helped to drive innovations that are increasingly difficult to predict…
Read more“Without data, you are another person with an opinion” These words from Edward Deming, a management guru, are the best definition of what means to…
Read moreThe 8th edition of the Big Data Tech Summit left us wondering about the trends and changes in Big Data, which clearly resonated in many presentations…
Read moreIn one of our recent blog posts Announcing the GetInData Modern Data Platform - a self-service solution for Analytics Engineers we shared with you our…
Read moreTogether, we will select the best Big Data solutions for your organization and build a project that will have a real impact on your organization.
What did you find most impressive about GetInData?